# Synthesis and structure of a helical polymer $\left[\mathrm{Ag}(\mathrm{R}, \mathrm{R}-\mathrm{DIOP})\left(\mathrm{NO}_{3}\right)\right]_{n}$ \{DIO P = (4R ,5R )-trans-4,5-bis[(diphenylphosphino)methyl]-2,2-dimethyl-1,3-dioxalane\} 

Biao W u, Wen-J ian Z hang, Shu-Yan Yu and Xin-Tao W u*<br>State K ey L aboratory of Structural C hemistry, Fujian Institute of Research on the Structure of M atter, C hinese A cademy of Sciences, Fuzhou, Fujian 350002, C hina

A polymeric complex of silver(I) with the chiral ligand ( $\mathrm{R}, \mathrm{R}$ )-DIOP \{DIOP = (4R ,5R)-trans-4,5-bis[(diphenyl-phosphino)methyl]-2,2-dimethyl-1,3-dioxalane\} has been synthesized; its crystal structure revealed that the complex had a right-handed helical extended structure and consists of a silver atom co-ordinated by two phosphorus atoms of two adjacent ( $R, R$ )-DIOP ligands and an oxygen atom of nitrate.

Helicity and chirality ${ }^{1}$ are interesting topics within the fields of chemistry, biochemistry and materials science and considerable attention has focused on the design and construction of metal complexes with helical conformations (i.e. helicates ${ }^{2}$ ). This type of complex has potential application to some newly emerging fields, such as supramolecular chemistry, ${ }^{3}$ asymmetric catalysis ${ }^{4}$ and non-linear optical materials. ${ }^{5} \mathrm{~A}$ number of helicates have been synthesized, ${ }^{6}$ but few optically active pure ones have been reported. ${ }^{7}$ H ere we report the synthesis and characterization of a helical polymer of silver(I) with the chiral ligand $(R, R)$-DIOP $\quad\{D I O P=(4 R, 5 R)$-trans-4,5-bis[(diphenylphos-phino)methyl]-2,2-dimethyl-1,3-dioxalane\} which is an important bidentate phosphine ligand. The metal complexes of the ligand have been well described as catalysts in a variety of asymmetric reactions. ${ }^{8}$
Treatment of the optically pure DIOP witn an equimolar amount of $\mathrm{AgNO}_{3}$ in methanol yields a colourless transparent solution from which a white powder $\dagger$ was isolated by mixing with diethyl ether. Colourless crystals suitable for X-ray analysis were obtained by recrystallization of the powder from methanol.

(R,R)-DIOP

[^0]The complex has an extended structure $\ddagger$ as shown in F ig. 1. It consists of a Ag atom co-ordinated by two phosphorus atoms of two adjacent ligands and an oxygen atom of nitrate. The A $g-P(1)$ distance of one ligand is $2.411(2) \AA$ and the $\mathrm{Ag}-\mathrm{P}(2 \mathrm{a})$ distance of a neighbouring ligand is $2.403(2) \AA$. The $\mathrm{A} g-\mathrm{P}$ distances (average $2.402 \AA$ ) are in the region of those for [ $\mathrm{Ag} \mathrm{g}_{4}(\mathrm{dp}$ $\left.\mathrm{m})_{4}\left(\mathrm{NO}_{3}\right)_{2}\right]^{2+}$ (dpm is an achiral bidentate phosphine) (average $2.401 \AA$ ). ${ }^{12}$ The A g-O (1) distance $[2.530(7) \AA$ ] is slightly longer than that in the latter (average $2.510 \AA$ ). A slightly distorted plane is composed of the four atoms $\mathrm{Ag}, \mathrm{P}(1), \mathrm{P}(2 \mathrm{a})$ and $\mathrm{O}(1)$. The angles $\mathrm{P}(1)-\mathrm{Ag}-\mathrm{P}(2 \mathrm{a}), \mathrm{P}(1)-\mathrm{Ag}-\mathrm{O}(1)$ and $\mathrm{P}(2 \mathrm{a})-\mathrm{Ag}-\mathrm{O}(1)$ are $148.49(8), 106.2(2)$ and $105.0(2)^{\circ}$, respectively. There is a two-fold screw axis parallel to the crystallographic $b$ axis in the polymer (see Fig. 2). The polymer chain consists of silver atoms and the ligands extend along the screw axis in a right-handed helix. The $A g \cdots A g(a)$ distance is $8.358 \AA$ and that of $\mathrm{Ag} \cdots \mathrm{Ag}\left(\mathrm{a}^{\prime}\right)$, along the helical axis, is $16.186 \AA$. The $0 \cdots$ (1) distance ( $2.760 \AA$ ) shows that there is a hydrogen bond between the solvent $\mathrm{CH}_{3} \mathrm{OH}$ and the $\mathrm{NO}_{3}{ }^{-}$anion.
Although a variety of transition-metal complexes with the ligand ( $R, R$ )-DIOP have been reported, most of them were single metal complexes with cis-bidentate co-ordination, ${ }^{13}$ however, a binuclear copper complex bridged by an aryl derivative of DIOP ${ }^{8}$ has been obtained.

## Acknowledgements

This research was supported by grants from the State K ey Laboratory of Structural Chemistry, the National Science Foundation of China and the Science Foundation of Fujian Province.
$\ddagger$ Crystal data for $\left[\mathrm{Ag}(\mathrm{R}, \mathrm{R}-\mathrm{DIOP})\left(\mathrm{NO}_{3}\right)\right]_{\mathrm{n}}: \quad\left[\mathrm{C}_{32} \mathrm{H}_{36} \mathrm{~A} \mathrm{gNO}_{6} \mathrm{P}_{2}\right]_{\mathrm{n}}$, $M_{r}=700.46 \times n$, orthorhombic, space group $P 212121$ (no. 19), $a=11.486(5), \quad b=16.186(5), \quad c=17.754(9) \quad \AA, \quad U=3300.6(24) \quad \AA^{3}$, $\mathrm{T}=293(2) \mathrm{K}, \mathrm{Z}=4, \mathrm{D}_{\mathrm{c}}=1.408 \mathrm{Mg} \mathrm{cm}^{-3}, \lambda=0.71073 \AA, \mu(\mathrm{Mo}$ $\mathrm{K} \alpha)=0.750 \mathrm{~cm}^{-1}, \mathrm{~F}(000)=1436$, colourless prism with dimensions $0.25 \times 0.20 \times 0.18 \mathrm{~mm}$. Data were collected on a Siemens SM ART CCD area-detector diffractometer, and corrected for absorption by SA DA BS. ${ }^{10}$ The range of absorption factors is 1.0000 to 0.6767. A total of 1261 frames were collected with a graphite monochromator in a three-circle goniometer (fixed x ). The exposuretime of a frame was 10 s . Data collection range $3.40<2 \theta<46.54,-11 \leqslant h \leqslant 12,-17 \leqslant$ $k \leqslant 16,-19 \leqslant 1 \leqslant 15$. Final $R$ value on $[I>4 \sigma(I)]$ data was 0.0493 . 13128 R eflections measured, 4733 unique ( $\mathrm{R}_{\text {int }}=0.0619, \mathrm{R}_{\sigma}=0.0828$ ) which were used in all calculations. The absolute configuration was confirmed by an $x$ refinement: $x=0.021$ (39). A ll calculations were performed on a INDY workstation using the SHELXL 93 program package. ${ }^{11}$ A tomic coordinates, thermal parameters, and bond lengths and angles have been deposited at the Cambridge Crystallographic D ata Centre (CCDC). See Instructions for Authors, J. C hem. Soc., D alton Trans., 1997, I ssue 1. A ny request to the CCD C for this material should quote the full literature citation and the reference number 186/516.


Fig. 1 Perspective drawing of the helically extended array in [A g$\{(\mathrm{R}, \mathrm{R})$-D IOP $\left.\}\left(\mathrm{NO}_{3}\right)\right]$ n along the crystallographic $b$ axis


Fig. 2 The structure along the b axis. Some C, O, N and H atoms are omitted for clarity


[^0]:    * E-M ail: wxt@ms.fjirsm.ac.cn
    † To optically pure DIOP ( $0.50 \mathrm{~g}, 1.0 \mathrm{mmol}$ ), prepared from l-tartaric acid according to the literature, ${ }^{9}$ in dried methanol ( $30 \mathrm{~cm}^{3}$ ) was added $\mathrm{AgNO}_{3}(0.17 \mathrm{~g}, 1.0 \mathrm{mmol})$. A fter refluxing under an Ar atmosphere in the dark for about 1 h , the mixture was filtered and the filtrate concentrated to about $5 \mathrm{~cm}^{3}$. To this dried diethyl ether ( $20 \mathrm{~cm}^{3}$ ) was added which led to the formation of a white powder ( 0.52 g , yield $74 \%$ ) (Found: $\mathrm{C}, 54.79 ; \mathrm{H}, 5.05$. Calc. for $\mathrm{C}_{32} \mathrm{H}_{36} \mathrm{~A} \mathrm{gN} \mathrm{O}_{6} \mathrm{P}_{2}: \mathrm{C}, 54.82 ; \mathrm{H}$, 5.14\%). ${ }^{1} \mathrm{H}$ NMR ( $\mathrm{CD}_{3} \mathrm{OD}, 499.887 \mathrm{MHz}$ ): $\delta 7.780$ and 7.375 (two groups, $m, 20 \mathrm{H}, \mathrm{C}_{6} \mathrm{H}_{5}$ ), 4.093 (t, $2 \mathrm{H}, \mathrm{CH}$ ), $2.462\left(\mathrm{~d}, 4 \mathrm{H}, \mathrm{CH}_{2}\right), 1.301$ (s, $6 \mathrm{H}, \mathrm{CH}_{3}$ ). ${ }^{31} \mathrm{P}-\left\{{ }^{\mathrm{I}} \mathrm{H}\right\} \mathrm{NMR}\left(\mathrm{CD}_{3} \mathrm{OD}, 202.361 \mathrm{MHz}\right): \delta 28.911$ $[d, J(A g-P)=205 \mathrm{~Hz}$ ].

