Synthesis and structure of a helical polymer $[Ag(R, R-DIOP)(NO_3)]_n$ {DIOP = (4R, 5R)-*trans*-4,5-bis[(diphenylphosphino)methyl]-2,2dimethyl-1,3-dioxalane}

Biao Wu, Wen-Jian Zhang, Shu-Yan Yu and Xin-Tao Wu*

State Key Laboratory of Structural Chemistry, Fujian Institute of Research on the Structure of Matter, Chinese Academy of Sciences, Fuzhou, Fujian 350002, China

A polymeric complex of silver(i) with the chiral ligand (R, R)-DIOP {DIOP = (4R, 5R)-*trans*-4,5-bis[(diphenyl-phosphino)methyl]-2,2-dimethyl-1,3-dioxalane} has been synthesized; its crystal structure revealed that the complex had a right-handed helical extended structure and consists of a silver atom co-ordinated by two phosphorus atoms of two adjacent (R, R)-DIOP ligands and an oxygen atom of nitrate.

Helicity and chirality¹ are interesting topics within the fields of chemistry, biochemistry and materials science and considerable attention has focused on the design and construction of metal complexes with helical conformations (*i.e.* helicates²). This type of complex has potential application to some newly emerging fields, such as supramolecular chemistry,³ asymmetric catalysis⁴ and non-linear optical materials.⁵ A number of helicates have been synthesized,⁶ but few optically active pure ones have been reported.7 Here we report the synthesis and characterization of a helical polymer of silver(I) with the chiral ligand {DIOP = (4*R*,5*R*)-*trans*-4,5-bis[(diphenylphos-(R,R)-DIOP phino)methyl]-2,2-dimethyl-1,3-dioxalane} which is an important bidentate phosphine ligand. The metal complexes of the ligand have been well described as catalysts in a variety of asymmetric reactions.8

Treatment of the optically pure DIOP with an equimolar amount of $AgNO_3$ in methanol yields a colourless transparent solution from which a white powder \dagger was isolated by mixing with diethyl ether. Colourless crystals suitable for X-ray analysis were obtained by recrystallization of the powder from methanol.

* E-Mail: wxt@ms.fjirsm.ac.cn

The complex has an extended structure ‡ as shown in Fig. 1. It consists of a Ag atom co-ordinated by two phosphorus atoms of two adjacent ligands and an oxygen atom of nitrate. The Ag–P(1) distance of one ligand is 2.411(2) Å and the Ag–P(2a) distance of a neighbouring ligand is 2.403(2) Å. The Ag-P distances (average 2.402 Å) are in the region of those for [Ag₄(dp $m_4(NO_3)_2]^{2+}$ (dpm is an achiral bidentate phosphine) (average 2.401 Å).12 The Ag–O(1) distance [2.530(7) Å] is slightly longer than that in the latter (average 2.510 Å). A slightly distorted plane is composed of the four atoms Ag, P(1), P(2a) and O(1). The angles P(1)-Ag-P(2a), P(1)-Ag-O(1) and P(2a)-Ag-O(1) are 148.49(8), 106.2(2) and 105.0(2)°, respectively. There is a two-fold screw axis parallel to the crystallographic *b* axis in the polymer (see Fig. 2). The polymer chain consists of silver atoms and the ligands extend along the screw axis in a right-handed helix. The Ag···Ag(a) distance is 8.358 Å and that of Ag \cdots Ag(a'), along the helical axis, is 16.186 Å. The O \cdots O(1) distance (2.760 Å) shows that there is a hydrogen bond between the solvent CH_3OH and the NO_3^- anion.

Although a variety of transition-metal complexes with the ligand (R,R)-DIOP have been reported, most of them were single metal complexes with *cis*-bidentate co-ordination,¹³ however, a binuclear copper complex bridged by an aryl derivative of DIOP⁸ has been obtained.

Acknowledgements

This research was supported by grants from the State Key Laboratory of Structural Chemistry, the National Science Foundation of China and the Science Foundation of Fujian Province.

‡ Crystal data for [Ag(*R*,*R*-DIOP)(NO₃)]_{*n*}: [C₃₂H₃₆AgNO₆P₂]_{*w*} *M*_r = 700.46 × *n*, orthorhombic, space group *P*212121 (no. 19), *a* = 11.486(5), *b* = 16.186(5), *c* = 17.754(9) Å, *U*= 3300.6(24) Å³, *T*= 293(2) K, *Z*=4, *D_c* = 1.408 Mg cm⁻³, λ = 0.710 73 Å, µ(Mo-Kα) = 0.750 cm⁻¹, *F*(000) = 1436, colourless prism with dimensions 0.25 × 0.20 × 0.18 mm. Data were collected on a Siemens SMART CCD area-detector diffractometer, and corrected for absorption by SADABS. ¹⁰ The range of absorption factors is 1.0000 to 0.6767. A total of 1261 frames were collected with a graphite monochromator in a three-circle goniometer (fixed *x*). The exposure time of a frame was 10 s. Data collection range 3.40 < 20 < 46.54, −11 ≤ *h* ≤ 12, −17 ≤ *k* ≤ 16, −19 ≤ *I* ≤ 15. Final *R* value on [*I* > 4σ(*I*)] data was 0.0493. 13 128 Reflections measured, 4733 unique (*R*_{int} = 0.0619, *R_σ* = 0.0828) which were used in all calculations. The absolute configuration was confirmed by an *x* refinement: *x* = 0.021(39). All calculations were performed on a INDY workstation using the SHELXL 93 program package.¹¹ Atomic coordinates, thermal parameters, and bond lengths and angles have been deposited at the Cambridge Crystallographic Data Centre (CCDC). See Instructions for Authors, *J. Chem. Soc., Dalton Trans.*, 1997, Issue 1. Any request to the CCDC for this material should quote the full literature citation and the reference number 186/516.

OMMUNICATION

[†] To optically pure DIOP (0.50 g, 1.0 mmol), prepared from L-tartaric acid according to the literature,⁹ in dried methanol (30 cm³) was added AgNO₃ (0.17 g, 1.0 mmol). After refluxing under an Ar atmosphere in the dark for about 1 h, the mixture was filtered and the filtrate concentrated to about 5 cm³. To this dried diethyl ether (20 cm³) was added which led to the formation of a white powder (0.52 g, yield 74%) (Found: C, 54.79; H, 5.05. Calc. for $C_{32}H_{36}AgNO_6P_2$: C, 54.82; H, 5.14%). ¹H NMR (CD₃OD, 499.887 MHz): δ 7.780 and 7.375 (two groups, m, 20 H, C₆H₃), 4.093 (t, 2 H, CH), 2.462 (d, 4 H, CH₂), 1.301 (s, 6 H, CH₃). ³¹P-{¹H} NMR (CD₃OD, 202.361 MHz): δ 28.911 [d, *J*(Ag-P) = 205 Hz].

Fig. 1 Perspective drawing of the helically extended array in [Ag- $\{(R,R)$ -DIOP $\}(NO_3)$]*n* along the crystallographic *b* axis

Fig. 2 The structure along the *b* axis. Some C, O, N and H atoms are omitted for clarity

References

- 1 V. Soghomonian, Q. Chen, R. C. Haushalter, J. Zubieta and C. J. O'Connnor, Science, 1993, 259, 1596.
- Ed. Engl., 1993, 32, 69; L. H. Carrad, D. M. L. Goodgame, S. P. W. Hill and D. Williams, J. Chem. Soc., Dalton Trans., 1993, 1003; S.-Y. Yu, Q.-H. Luo, B. Wu, X.-Y. Huang, T.-L. Sheng, X.-T. Wu and D.-X. Wu, Polyhedron, 1997, 16, 453.
- 4 E. J. Corey, C. L. Cymin and M. C. Noe, Tetrahedron Lett., 1994, 35, 69; K. Maruoka and H. Yamamoto, J. Org. Chem., 1993, 58, 2938
- 5 C. Chen and K. S. Suslick, Coord. Chem. Rev., 1993, 128, 293 and refs. therein.
- 6 W. Zarges, J. Hall, J.-M. Lehn and C. Bolm, Helv. Chim. Acta, 1991, 74, 1843.
- Y. Jossi, H. Kotsuki, K. Isobe, N. Moriya, Y. Nakagawa and M. Ochi, *Inorg. Chem.*, 1995, **34**, 530.
 J. M. Townsend, J. F. Blount, R. C. Sun, S. Zawoiski and D. Valen-
- tine, jun., *J. Org. Chem.*, 1980, **45**, 2995. 9 B. A. Murrer, J. M. Brown, P. A. Chaloner, P. N. Nicholson and
- D. Parrer, Synthesis, 1979, 350.
- 10 G. M. Sheldrick, SADABS, University of Göttingen, 1996.
- 11 G. M. Sheldrick, SHELXL 93, University of Göttingen, 1993.
- D. M. Ho and R. Ball, *Inorg. Chem.*, 1983, **22**, 4073.
 V. Gramlich and G. Consiglio, *Helv. Chim. Acta*, 1979, **62**, 1016.

Received 29th January 1997; Communication 7/00681K